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Abstract: Biofilms are a major problem in hard-to-heal wounds. Moreover, they are composed
of different species and are often tolerant to antimicrobial agents. At the same time, interspecific
synergy and/or competition occurs when some bacterial species clash. For this reason, the tolerance
of two dual-species wound biofilm models of Pseudomonas aeruginosa and Staphylococcus aureus or
Enterococcus faecium against antimicrobials and antimicrobial dressings were analyzed quantitatively
and by confocal laser scanning microscopy (CLSM). The results were compared to findings with
planktonic bacteria. Octenidine-dihydrochloride/phenoxyethanol and polyhexamethylene biguanide
(PHMB) irrigation solutions showed a significant, albeit delayed reduction in biofilm bacteria, while
the PHMB dressing was not able to induce this effect. However, the cadexomer-iodine dressing
caused a sustained reduction in and killed almost all bacteria down to 102 cfu/mL within 6 days
compared to the control (1010 cfu/mL). By means of CLSM in untreated human biofilm models, it
became evident that P. aeruginosa dominates over E. faecium and S. aureus. Additionally, P. aeruginosa
appeared as a vast layer at the bottom of the samples, while S. aureus formed grape-like clusters. In
the second model, the distribution was even clearer. Only a few E. faecium were visible, in contrast
to the vast layer of P. aeruginosa. It seems that the different species avoid each other and seek
their respective niches. These mixed-species biofilm models showed that efficacy and tolerance to
antimicrobial substances are nearly species-independent. Their frequent application appears to be
important. The bacterial wound biofilm remains a challenge in treatment and requires new, combined
therapy options.

Keywords: chronic wound; mixed-species biofilm; extrapolymeric substance (EPS); antimicrobials;
antimicrobial dressings

1. Introduction

Following the individualized therapy of the underlying disease, wound biofilm is
the greatest local challenge in hard-to-heal wounds. About 75% of all chronic wounds
are densely populated with biofilm [1,2]. Implants in vascular surgery or orthopedics
are often colonized by biofilms consisting of multiple species [1,3]. The standardized
analyses of wound swabs performed in routine clinical practice using nutrient agar and
light microscopy usually detect only a very small proportion of biofilm-forming species in
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chronic wounds [4]. At present, it is still unclear if the diversity of species in the biofilm is
important and to what extent this is clinically relevant in wound infection.

During the formation of wound biofilms, planktonic bacteria cells attach themselves
to the wound bed and produce an extracellular matrix (EPS) consisting of lipids, polysac-
charides, proteins and extracellular DNAs [5–7]. This helps the microorganisms to adhere
strongly to the wound bed, making them difficult to remove [6].

Another important component of the EPS matrix is water. In this way, bacteria are
protected from dehydration [6–8]. The dry mass of most biofilms consists of over 90% EPS
matrix and only 10% microorganisms [6]. Due to biofilm formation, embedded bacteria are
more tolerant against host immune defense and various types of antimicrobial treatments
(e.g., antibiotics and ultraviolet radiation) [6,7]. The biofilm matrix serves as a fortress that
protects the bacteria from contact with antimicrobial agents [6,7,9].

Furthermore, biofilms show a high diversity with synergetic interaction, such as cell–cell
communication and horizontal gene transfer [6,7]. Especially, Quorum sensing is a kind of
communication through which many activities, such as adhesion, biofilm formation, virulence
factors, horizontal gene transfers and even antibiotic resistance, can be controlled [6–10]. The
various factors increase resistance against antibiotics and other treatments.

However, there are species, such as P. aeruginosa, which can produce antimicrobial
agents against other bacteria. In this way, one bacterial species can dominate another
in a mixed-species biofilm [11–13]. In many biofilm-burdened human wounds, where
P. aeruginosa and other species could be detected in the microbiological wound swab analy-
sis, a clinical dominance of P. aeruginosa is evident [14]. In addition to the typical greenish
staining of the necrotic tissue and/or wound dressing, this can be detected by means of
the typical cyan-blue glow of the pyoverdines (metabolic catabolites of P. aeruginosa) when
exposed to UV–near light (405 nm; e.g., MolecuLight®, MolecuLight Corp., Toronto, ON,
Canada) [15]. However, according to the manufacturer, this is only possible with a high
bacterial density of more than 104 cfu/g.

Independent of the bacterial coexistence, a possible symbiosis or competition in the
human-wound biofilm of chronic wounds, the question arises as to whether, in a multi-
species biofilm, bacteria exert a synergistic behavior becoming more tolerant to antimi-
crobials and wound dressings containing active ingredients. In addition, under this vital
challenge, the dominance of one species over another could be enhanced, or circumstantial
pressure might select species of lesser quantities to gain pathogenic potential. First, answers
to this question are presented by the analysis of three of the most frequently detected bacte-
rial species in chronic wounds [16,17] in combination with each other and under additional
challenge with antimicrobial wound irrigation solutions and wound dressings frequently
used in Europe.

2. Methods
2.1. Test Organisms and Nutrients

The test organisms Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC
15442) and Enterococcus faecium (ATCC 6057) were chosen as common pathogens on chronic
wounds and typical biofilm builders. Bacterial strains were cultivated on casein/soy
peptone agar plates (CSA) according to EN 13727. The second subculture was used for
testing. Each bacterial suspension was adjusted to a 0.5 McFarland standard (approx.
1.5 × 108 cfu/mL) using a densitometer (Grant Bio™ DEN-1B, Grant Instruments Ltd.;
Cambs SG8 6 GB, Cambridge, UK).

2.2. Preparation of the Leucocyte-Rich Human-Plasma Biofilm Model (lhBIOM)

The preparation of the lhBIOM was performed as described previously [18]. In brief,
fresh frozen plasma (FFP; citrate-buffered) and one LRS® chamber of leukocyte apheresis
(Trima Accel®; Terumo BCT Inc.; Lakewood, CO, USA) were obtained from the Institute
for Transfusion Medicine (University Medical Center Hamburg-Eppendorf, Hamburg,
Germany). All donors provided their informed and written consent for the use of their
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blood products. FFP was thawed, adjusted to 250 mL and the “immunocompetence” of
a platelet donor was added. The immune cells (about 40 × 103 leukocytes/µL) were
harvested by using a special automated blood collection system for apheresis Terumo
BCT design (Trima Accel® LRS® Platelet, Plasma Set, REF number 82,300; Terumo BCT
Inc., Lakewood, CO, USA). The content of the LRS® chamber was placed in a tube and
centrifuged at 1610× g. The remaining erythrocytes were gently removed and the plasma–
leukocyte mix was added to the FFP. After gentle mixing, the combined bacterial suspension
(P. aeruginosa and S. aureus or P. aeruginosa and E. faecium) was added, resulting in a final
concentration of 2.5 × 107 cells/mL (1.5 × 106 cfu/model). Next, 18.26 µL of CaCl2
(500 mM) per mL plasma was added to the bacteria–plasma mix to induce coagulation.
The resulting biofilm mixture was immediately transferred into 12-well plates (1.5 mL per
model/well). The well plates were placed in a rotation shaker and incubated for 18 h at
60 rpm and 37.0 ◦C to polymerize and form an extracellular matrix.

2.3. Antimicrobial Treatment of the Biofilm Models and Quantification of the Bacterial Load

Two antiseptic and antimicrobial irrigation solutions were used with the active agent
octenidine-dihydrochloride/phenoxyethanol (0.1% OCT/2% PE: Schülke&Mayr; Norder-
stedt, Germany) and polyhexamethylene biguanide (0.1% PHMB, B. Braun; Melsungen,
Germany), respectively. The agents were used in commercially available concentrations
and compared to the untreated controls. Each biofilm disc was treated with 300 µL of
the solution for 24, 48 and 72 h, with repeated applications of 300 µL every 24 h. After
the specified treatment periods, the antimicrobial activity was terminated by adding an
equivalent volume of the neutralizing solution TLSNt-SDS (6% polysorbate 80, 6% saponin,
0.8% lecithin, 2% sodium dodecyl sulphate and 0.6% sodium thiosulphate in di-water) to
each well for 5 min at room temperature in a rotation shaker.

For testing the performance of antimicrobial dressings on mixed-species biofilms, a
polyhexanide-containing dressing (0.25–0.65 mg/cm2 PHMB; Suprasorb® P, Lohmann &
Rauscher GmbH, Vienna, Austria), a cadexomer-iodine-containing (0.90% w/w C-IOD;
Iodosorb®, Smith&Nephew GmbH, London, UK) and an agent-free control dressing (Urgo
Clean, Urgo GmbH; Sulzbach, Germany) were used. All dressings were prepared in an
aseptic manner with a diameter of 2.2 cm (A = 3.8 cm2), fitting press-fit, in one well of
a standard 12-well plate (Sarstedt, Nuembrecht, Germany) containing an lhBIOM. Addi-
tionally, weighted with 20 g, a wound-like scenario with direct dressing–biofilm contact
was created. The dressings remained on the biofilm without change for 1, 3 and 6 days
and were surrounded by fluid (FFP, immune cells and bacterial products). Plastic beakers
(50 mL) were filled with glass beads (D = 3–4 mm) covering the bottom, and 10 mL of the
neutralizer solution TLSNt-SDS (6% polysorbate 80, 6% saponin, 0.8% lecithin, 2% sodium
dodecyl sulfate and 0.6% sodium thiosulfate in aqua dest.) was added. The dressings were
placed in this solution and shaked for 10 min at 200 rpm, and the extracts thus obtained
were plated out in tenfold dilutions on CSA agar. After incubation at 37 ◦C under aerobic
conditions for 48 h, the quantification of colony-forming units using a digital colony counter
(NSCA 436000, VWR International GmbH; Darmstadt, Germany) was performed.

The antimicrobial activity in the lhBIOM was neutralized by adding 300 µL of the
neutralizing solution TLSNt-SDS (see above) to each well. The plates were subsequently
placed on a rotation shaker for 5 min at room temperature for the incubation of neutralizing
agents. Biofilm models independent of the treatment were then dissolved by adding 3 mL
(1:1 v/v) 10% (w/v) bromelain (Bromelain-POS®, Ursupharm Arzneimittel; Saarbrücken,
Germany) after detachment from the wall of the well and puncturing with a pipette tip
for several times to facilitate the bromelain distribution for dissolving the model. For
quantification, the resulting solution was serially diluted tenfold. A total of 50 µL of each
dilution was plated on CSA (spread technique) and incubated for 48 h at 37 ◦C under
aerobic conditions. The colony-forming units (in cfu/mL) were determined using a manual
colony counter (Schuett count, Schuett-Biotec GmbH; Göttingen, Germany).
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2.4. Quantitative Suspension Method (QSM)

For addressing differences in bacterial response to antimicrobials in planktonic form
and biofilm formation, mixed strains were also evaluated in a quantitative suspension
method (QSM) based on DIN EN 13727 with a high organic load (3.0 g/L bovine albumin +
3.0 mL/L sheep erythrocytes, i.e., “dirty conditions”). The bacterial test suspensions of
P. aeruginosa and S. aureus (M1) and P. aeruginosa and E. faecium (M2) were adjusted in a
sum of 1.5 × 108 cfu/mL (0.5 McFarland standard) initial concentration in tryptone salt
broth. OCT/PE and PHMB solutions were added to the concentrated DMEM, yielding
final test concentrations of 80%, 50% and 10% (v/v). For testing the antimicrobial activity,
8 mL of the different suspensions and 1 mL of the organic load were exposed to 1 mL of
the test solution for 60 s. For the neutralization of actives, 1 mL of the test suspension
was transferred to 8 mL of the neutralizer containing 60 g/L of polysorbate 80, 60 g/L of
saponine, 8 g/L of lecithin, 1 g/L of histidine, 2.5 g/L of SDS and 1 mL of di-water. The
neutralization time was 10 s. The surviving bacteria (in cfu/mL) were quantified on agar
plates as described for the biofilm models.

2.5. Brill–Braunwarth Method

For evaluating the antimicrobial efficacy of wound dressings against planktonic cells,
the Brill–Braunwarth method was used [19,20]. Agar plates were inoculated with 0.1 mL
suspension of test organisms. As described above, two mixed inoculates were used with initial
cell counts of 3–10 × 106 cfu. Pre-wetted test samples were applied to the agar surface and
weighed down for full contact. After 24 h the agar underneath the samples was cut out. The
cut-out agar was transferred into a validated neutralizer suspension (1 g/L polysorbate 80 +
1 g/L sodium thiosulfate) in a sterile masticator bag. The suspension was homogenized
using a masticator and incubated at room temperature for 5 min. Colony-forming units were
analyzed by plating dilutions from the suspension treated in the masticator on TSA.

2.6. Statistical Analysis

Values were expressed as mean ± standard error of the mean (MV ± SEM) with a
95% confidence interval (CI) based on triplicates, derived of three different anonymous
blood donors regarding the lhBIOM. Bacterial reduction rates (in ∆log10 cfu/mL) were
calculated using GraphPad PRISM (Version 8.2.1; GraphPad Software Inc., La Jolla, CA,
USA). Statistical analysis contained a two-way ANOVA and followed by Holm–Sidak post
hoc test for the evaluation of multiple comparisons. A p-value of ≤0.05 was considered
statistically significant. The histological analysis was descriptive and qualitative without
statistical considerations.

2.7. Microscopic Imaging of the Mixed Biofilm Models with and without Antimicrobial Treatment

In 8-well Ibidi chamber slides (Ibidi GmbH; Gräfelfing, Germany), the biofilm model
was prepared for the laser scanning microscope (LSM 800 Carl Zeiss AG, Oberkochen,
Germany) in combination with the C-Apochromat objective (63×/1.20 W) (Carl Zeiss Mi-
croscopy GmbH; Hamburg, Germany) with immersion oil. For this investigation, labelled
microorganisms were used (P. aeruginosa (PAO1) mCherry, S. aureus (SH1000) and E. faecium
(BSU 385 kindly provided by B. Spellerberg, Institute of Medical Microbiology; University
of Ulm; Ulm, Germany [21]) GFP). First, 300 µL of the biofilm mixture was transferred into
each well of the Ibidi chamber. After incubation at 37 ◦C, each chamber (except for the
control) was treated with 60 µL OCT/PE or PHMB. The experiment was performed on a
slide, treated after 24, 48 and 72 h with OCT/PE or PHMB. In addition, a control without
treatment was run.

Following image capturing, the slides were re-incubated and further treated with a
repetitive application as described above for subsequent imaging time-points. Therefore,
no neutralization was performed.
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Three-dimensional reconstructions and mosaic images, which consisted of 20 single
shots, were created using the software ZEN (version 2.3; Carl Zeiss Microscopy GmbH;
Hamburg, Germany).

3. Results
3.1. Efficacy of Wound Irrigation Solutions on Planktonic Bacteria Cells

The results in this section present a first overview of the efficacy of wound irrigation
solutions over the bacteria strains based on planktonic cells. After treatment with com-
mercially available OCT/PE and PHMB wound irrigation solutions in 10%, 50% and 80%
concentrations, the bacterial count was determined. OCT/PE kills all bacterial species
in 50% and 80% solutions. Only P. aeruginosa showed a growth ranging from 3.57 to
4.85 log10 cfu at a concentration of 10%, while the other bacteria were eradicated regardless
of the combination. However, against P. aeruginosa at 10% OCT solution, lower reduction
factors were obtained in combination with S. aureus than with E. faecium. For M1, the
reduction in P. aeruginosa was around 64% in contrast to M2 with 50%. However, a complete
bacterial eradication was shown in all species from a 50% concentration of the clinically
used OCT/PE irrigation solutions onwards (Table 1).

Table 1. Log10 reduction in mixed-species suspensions (initial cell count: >107 bacteria) after the ap-
plication of octenidine-dihydrochloride/phenoxyethanol (OCT/PE) or polyhexamethylene biguanide
(PHMB) solutions under dirty conditions. Analyses were based on DIN EN 13727:2015, whereas a
log10 reduction ≥ 5 refers to a sufficient antibacterial efficacy.

Concentration M1 lgN0 7.62 M2 lgN0: 7.20

OCT/PE PHMB OCT/PE PHMB

P. aeruginosa S. aureus P. aeruginosa S. aureus P. aeruginosa E. faecium P. aeruginosa E. faecium

10% 2.77 ≥5.47 3.64 4.96 3.63 ≥5.05 3.38 3.89

50% ≥5.47 ≥5.47 ≥5.47 ≥5.47 ≥5.05 ≥5.05 ≥5.05 ≥5.05

80% ≥5.47 ≥5.47 ≥5.47 ≥5.47 ≥5.05 ≥5.05 ≥5.05 ≥5.05

PHMB also acted as bactericidal (reduction factor ≥ 5 log, according to EN 13727) at a
concentration starting at a 50% dilution of its clinical irrigation solution. At 10% PHMB, the
bacteria strains showed a growth ranging from 2.66 to 3.98 log10 cfu. Likewise, the bacterial
composition was hardly different. Except for S. aureus, all bacteria had a log10 reduction of
less than 4 log10, while the log10 reduction in this germ was 4.96 log10 (Table 1).

3.2. Efficacy of the Antimicrobial Wound Dressings on Planktonic Cells

In contrast to the wound irrigation solutions, the efficacy of antimicrobial wound
dressings was restricted. Primarily, C-IODINE showed a strong bactericidal effect, so that
no surviving bacteria (cfu) could be counted while the bacterial count with the PHMB
wound dressing was almost identical to the agent-free control dressing. Especially, in the
case of S. aureus, around 108 cfu/mL were counted after treatment with the PHMB dressing,
while less than 108 cfu/mL were detected in the control (Table 2).

3.3. Antimicrobial Efficacy of the Wound Irrigation Solution on the Different
Mixed-Species Biofilms

The analysis of the two wound irrigation solutions showed nearly similar results for
the mixed-species biofilm models M1 and M2. While the bacterial counts of the control
slightly increased from 24 to 72 h, the wound irrigation solutions OCT/PE and PHMB
induced a significant decrease down to 5 log steps, which by definition corresponds to a
bactericidal effect (Figure 1). Already after one day, a reduction of >1 log10 by OCT/PE
and 1–4 log10 by PHMB was seen, in which PHMB had a stronger effect on P. aeruginosa
and E. faecium than on the mixed biofilm with P. aeruginosa and S. aureus. Treatment with
OCT/PE showed only slight differences between the models. After 72 h, the bacterial
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counts between the different models treated with OCT/PE or PHMB were nearly the same,
with approx. 103 cfu/mL in contrast to the control, with approx. 1010 cfu/mL.

Table 2. Colony count (log10) in mixed-species suspensions (initial cell count (i.c.): >108 bacteria)
after the application of dressings containing cadexomer-iodine (C-IODINE) or polyhexamethylene
biguanide (PHMB). Analyses according to the Brill–Braunwarth method were based on DIN 58940.
The test was conducted in triplicate. M1: multispecies suspension with P. aeruginosa and S. aureus;
M2: multispecies suspension with P. aeruginosa and E. faecium (MV: mean value; SEM: standard error
of the mean).

Biofilm Model Species
Control PHMB Dressing Cardexomer-Iodine Dressing

MV SEM MV SEM MV SEM

M1
i.c. log 8.36 cfu/mL

P. aeruginosa 9.12 0.086 9.02 0.096 0 0
S. aureus 7.59 0.419 8.41 0.014 0 0

M2
i.c. log 8.20 cfu/mL

P. aeruginosa 7.31 0.086 7.54 0.083 0 0
E. faecium 6.23 0.17 6.35 0.071 0 0
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3.4. Anti-Biofilm Activity of the Antimicrobial Wound Dressings in the Different
Mixed-Species lhBIOM

In contrast to the wound irrigation solutions, the two antimicrobial dressings per-
formed differently, as the reduction in the colonies in the PHMB dressing was almost not
significant in contrast to the control. After one day of treatment of the M2 biofilms, the bac-
terial growth was only one log10 reduced compared to the agent-free dressing (Figure 2a),
with no further reduction on days 3 and 6. In M1 biofilms with the combination of P. aerugi-
nosa and E. faecium, a trend reduction of 1–2 log10 could be observed only after 6 days. The
C-IODINE dressing reduced the bacteria in both models M1 and M2 by 2–3 log10 after one
day (Figure 2); unfolded without dressing changed its effect further, so that, on day six,
only about 2 log10 of bacteria remained.
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after treatment with the antimicrobial dressings containing cadexomer-iodine (C-IODINE) or polyhex-
amethylene biguanide (PHMB) and the control after 1, 3 and 6 days (values expressed as MV ± SEM
* p ≤ 0.05 vs. the control).

3.5. Quantitative Microbial Load in Wound Dressings

While the results shown in Figure 2 refer translationally to the possible reduction in
bacteria in the wound, Figure 3a,b show the bacterial uptake in the exudate equivalent of
the dressings. In the agent-free control dressing, an almost constant bacterial content of



Biomedicines 2023, 11, 2640 8 of 15

8–10 log10 was detected in the eluate. The PHMB dressing also showed a constant, M1-
and M2-independent bacterial content of 6–8 log10. In the eluate of the C-IODINE dressing,
no bacteria were counted after day one. Even after 3 or 6 days, not even 100 cfu/mL
were counted (Figure 3a,b), showing that there is no significant difference between M1
and M2. However, it is significantly different from the PHMB-containing and agent-free
control dressings.
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3.6. Microscopy Imaging of the Bacterial Strains in the lhBIOM

With the help of a confocal microscopy, the ratio between the species in the multispecies
biofilm became visible (Figures 4 and 5). The bacteria from M1 had a different appearance,
while S. aureus had an aggregated structure; P. aeruginosa was widely distributed.
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Figure 5. Confocal laser scanning microscopy (CLSM) mosaic images consisting of 20 single shots of
the mixed-species lhBIOM consisting of M2 (P. aeruginosa (mCherry) + E. faecium(GFP)) as (a–c) the
untreated control and (d–f) 24, 48 and 72 h after the application of the wound irrigation solutions
containing octenidine-dihydrochloride/phenoxyethanol (OCT/PE) or (g–i) (polyhexamethylene
biguanide (PHMB) (63× magnification).
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In contrast to the control, it seems that S. aureus initially survives better than P. aerug-
inosa in the sample with the OCT/PE treatment. In this case, the difference between the
species also became much more evident. However, a slight decline in the bacteria became
apparent (Figure 4).

The PHMB sample was similar to the control (Figure 4) but also with a slight de-
crease in bacteria. In addition, in some images, the platelets of the lhBIOM fluoresced red
(Figure 4e,i). In the 3D images, it seems that P. aeruginosa populated the lower layers of
the sample, while S. aureus stayed true to their name and formed big grape-like clusters
(Figure 6).
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Figure 6. Visualization of the bacterial configuration in the lhBIOM of the mixed-species (a–c) M1
(P. aeruginosa (mCherry) + S. aureus (GFP)) and (d–f) M2 (P. aeruginosa (mCherry) + E. faecium (GFP))
by 3D confocal laser scanning microscopy (CLSM) after 48 h with and without the application of
wound irrigation solutions containing octenidine-dihydrochloride/phenoxyethanol (OCT/PE) or
polyhexamethylene biguanide (PHMB) (63× magnification).

In contrast to M1, the bacteria of M2 were not different in their appearance. In this
multispecies sample, it became visible that E. faecium was less present than P. aeruginosa
(Figure 5). The 3D images of the control also showed uniform layers of P. aeruginosa at the
bottom. E. faecium showed no uniform layer but was ubiquitously present (Figure 6). In the
control, E. faecium clustered in the higher layers. However, after 48 and 72 h, the strain was
hardly visible (Figures 5 and 6). More than in M1, the decrease in the bacterial strains after
treatment with OCT/PE or PHMB became visible (Figures 5 and 6).

4. Discussion

Translational research provides an essential contribution to closing the gap between
basic research and clinical reality. It is evident that the human environment plays a
significant role in the expression of an effect and, in particular, makes a difference in
the quality and quantity of the biofilm [22]. A wound exudate originates in blood serum,
and thus the protein content and composition of an acute wound exudate and serum show
little difference [23,24].
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However, depending on the degree of healing, the wound exudate also has a different
quantitative composition with regard to growth factors or bacterial metabolites and toxins.
For example, interleukin-1β and matrix metalloproteases (MMP) 2 [25,26] or lactate [27]
increase with inflammation and infections. The wound environment, represented in lh-
BIOM by human blood plasma, immune cells, bacteria themselves and their products, also
influences the composition of the EPS of the biofilm [14]. This plays an essential role in the
biofilm’s typical tolerance to antimicrobials [22]. It is a mechanical, chemical and physical
barrier. The EPS with its embedded and surrounding bacteria also interacts with the human
cells of the wound bed [14], which in turn causes changes in the environment. Biofilm
models free of human components do not allow such deep insights into host–bacteria
interactions [28,29]. Despite this knowledge, most analyses concerning the topic of “wound
biofilm” are based on the growth of bacteria on adhesive materials (plastic wells, glass slides
and medical devices) [30,31] or three-dimensional in vitro models based on a liquid-filled
chamber [30,32] or are comprised of a collagen matrix with serum proteins [33].

Another factor that influences the biofilm, its structure and matrix, is the bacteria that
interact with it and build it up. It is known that, in multi-species biofilms typical of chronic
wounds, bacteria interact synergistically and competitively with each other [22].

In this study, mixed-species lhBIOMs containing P. aeruginosa, S. aureus and E. faecium
were chosen, because they belong to the most common bacterial pathogens isolated from
chronic wound infections [34,35]. In this paper, the laser scanning microcopy images
showed a dominance of P. aeruginosa over S. aureus but one that was higher over E. faecium
(Figures 4 and 5). At the same time, it became apparent that the species avoid each other; so,
the samples did not have a homogeneous bacterial distribution. Especially, S aureus formed
staphylococci clusters to escape from P. aeruginosa (Figures 4 and 6). A possible reason
for the different growth of the bacteria in the lhBIOM could be the generation time of the
individual bacteria. Even when the doubling times are similar under optimal conditions,
the medium does not fulfil the requirements of the bacteria to the same extent [36–38].
Different generation times could lead to the faster growing species being able to colonize
the surfaces, thus limiting the resources for the slower growing species and thus their
survival [39]. In the model with E. faecium and P. aeruginosa, the different growths could be
due to the low presence of E. faecium; so, P. aeruginosa has already taken over the resources
before E. faecium could spread. Nevertheless, a complicating factor was the autofluorescence
of some red blood cells. In further studies, a possible suppression would be appropriate to
distinguish the human components from the bacterial ones [40].

Looking at the numerical distribution of bacteria over time, it is likely that P. aeruginosa
displaced a large proportion of S. aureus and thus prevented the orchestrated biofilm build-
up of this competing species [25]. There are known antimicrobial systems of
P. aeruginosa against S. aureus, such as iron-regulated antimicrobial activity because of
multiple alkylquinolones by cystic fibrosis isolates [12], the secretion of proteases that can
lyse S. aureus [11] or the production of pyocyanin that inhibits the growth of S. aureus [41].
Similar processes may have led to the decrease in the number of S. aureus cells on the
images and the planktonic cell assays.

Thus, it is reasonable to assume that the response of the biofilm to antibiotics and
antiseptics is also dominated by P. aeruginosa. Studies reported a co-existent or niche
formation of P. aeruginosa together with S. aureus. Furthermore, in chronic wounds, which
were contaminated with both species, P. aeruginosa was located in deeper regions of the
wound than S. aureus [35,42]. This was also visible in the 3D images, where P. aeruginosa
tended to colonize the lower layers and S. aureus the upper layers. The extent to which S.
aureus is relevant to P. aeruginosa or possibly even beneficial in the mixed-species biofilm
is still unclear. Overall, however, it has been proven that a multispecies biofilm develops
higher tolerance and causes a greater tissue infiltration [43].

In clinical wounds, this is apparent, but also not proven. On the other hand, in the
microbiological results of swabbing, if Pseudomonas is present, its numerical dominance
is usually observed (unpublished data). Using UV–near light (405 nm, MolecuLight®,
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MolecuLight Corp.; Toronto, ON, Canada) to detect wound areas with a high bacterial
burden (104 cfu/g) also reflects this phenomenon: when P. aeruginosa-specific metabolic
products (e.g., pyoverdins) are detected by means of cyan blue fluorescence, a wide distri-
bution and a bright glow are very often observed due to a high level of colonization and
infiltration of the wound. The rather unspecific red fluorescence of the metabolic products
(e.g., porphyrins) of, e.g., Gram-positive S. aureus or Enterobacteria, is considerably inferior
here [14]. However, if P. aeruginosa is not detectable among the wound pathogens, the red
fluorescence is much more pronounced and widespread. The clinical picture here exhibits
a visual correlation to confocal laser scanning microscope images (Figure 6a).

Considering the analyses of the antimicrobial wound irrigation solutions and wound
dressings, the aforementioned increase in antiseptic tolerance for the tested mixed-species
biofilms with P. aeruginosa and S. aureus and E. faecium, respectively, cannot be reproduced.
Comparing the antimicrobial effects of OCT/PE and PHMB (limited in principle in biofilms)
with the results of the respective single-species biofilms in the same human model [18,44,45],
there were no differences apparent. In the P. aeruginosa single-species biofilm, the PHMB
wound dressing produced a sustained reduction of 2–3 log steps over the test period of 72 h;
in both mixed-species biofilms, the reduction was 1–2 log steps; so, there is no apparent
evidence of an increase in the tolerance of the tested species through interaction. It seems
evident that the biofilm matrix (EPS), which is mainly composed of polysaccharides and
proteins, inhibits PHMB from penetrating deeper and damaging the bacterial membrane
and DNA [46]. Recent in vitro, in vivo and human studies also showed that the agent
polyhexamethylene guanidine (PHMG), chemically quite similar to PHMB, appears to have
a stronger potential to attack wound biofilms, and clinical results are promising in terms of
bacterial reduction [47,48]. The role of additive wound debridement should certainly not
be underestimated.

The antibacterial effect in the highly effective C-IODINE-containing wound dressing
also shows only small differences between single- [49] and mixed-species biofilms. These
observations have to be verified in a study with single and mixed species, so that the
results can be compared directly. In addition, the possible effect of mixed-species biofilms
and interspecies interaction remains to be investigated, e.g., by transcriptome analysis,
selective cultivation/PCR quantification or side-by-side comparison of single-species and
mixed-species biofilms. Nevertheless, a decrease in the number of germs was observed for
both multispecies over time with OCT/PE and PHMB, which was visible in the microscopy
images too (Figures 4 and 5).

Comparing the results of the mixed-species lhBIOMs with the planktonic mixed
cultures of the same species, the high pre-described efficacy [50,51] of OCT/PE and PHMB
in planktonic settings was proven. Only a 10% solution of the wound irrigation solution
used in clinical practice allowed for the growth of P. aeruginosa (OCT/PE and PHMB) and
E. faecium (PHMB). As described previously [52], the PHMB-releasing wound dressing
also shows a loss of efficacy in the planktonic mixed cultures, presumably due to the high
protein load and comparably low overall concentration of the PHMB agent within the
dressing. This is independent of the respective bacterial species. In contrast, the wound
dressing containing C-IODINE showed a relevant and significant reduction in all bacteria
in the mixed cultures during the test period. However, it cannot be concluded from the
present results whether the PHMB-releasing dressing would develop its antiseptic efficacy
with a lower protein load.

As expected, the 3D CLSM images of the treated models showed a decrease in bacterial
cells over time and repeated treatment. Conspicuous is the strong presence of S. aureus.
Possibly, P. aeruginosa have to protect themselves against antimicrobials rather than fight
against foreign strains. In addition, the grape cluster of S. aureus could be more protective
to save the bacteria inside the formation than P. aeruginosa, which provide a large surface
for attack. On the other hand, there is research that addresses the opportunistic effect of
antimicrobial substances of P. aeruginosa, which can increase antibiotic tolerance in S. aureus
due to the inhibition of respiration and the depletion of intracellular ATP [53]. The question
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of whether exoproducts of P. aeruginosa promote the antimicrobial tolerance of S. aureus is
still open. Further research could improve the understanding of interspecific interactions
and provide information on tolerance to antimicrobials to improve the treatment and
healing of infected wounds.

5. Conclusions

In order to understand the formation and tolerance to antimicrobials in wound
biofilms, 3D models are required that incorporate as many components as possible of
the patient’s own, i.e., human, wound biofilm; this occurs in the lhBIOM. In particular,
the 3D CLSM showed a very interesting distribution of S. aureus clusters in the presence
of P. aeruginosa—suggested to be based on interspecies competition. On the other hand,
E. faecium did not survive the combination of P. aeruginosa and the antimicrobial treatment.
Further analyses are needed to decipher the population-specific behavior within multi-
species biofilms, their relevance and the molecular mechanisms (e.g., quorum sensing) that
explain the behavior of the species tested in this paper. In particular, how the interspecific
interaction behaves in combination with antimicrobials. Moreover, the comparatively low
antimicrobial efficacy of the tested antimicrobial dressings on biofilm bacteria is noteworthy.
These observations support the need for wound bed preparation or debridement prior to
their application in clinical practice.
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